

Neurobiology of multifunctional prosody: Scope and trajectory

Hatice Zora^{1,2} Stephanie Forkel^{1,2,3}

1) Max Planck Institute for Psycholinguistics, The Netherlands 2) Donders Institute for Brain, Cognition and Behaviour, Radboud University, The Netherlands 3) Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France

Hatice.Zora@mpi.nl

What is prosody?

Prosody covers a variety of interconnected phenomena (e.g., stress, tone, rhythm and intonation), bridging sensation and cognition from attention to interaction [1-4]. Its multifunctionality makes it a key entry point to speech origins and linguistic processing. Yet neural mechanisms remain elusive, hindered by incomplete data and prosody's ill-defined status. Recent frameworks, such as the Morphospace Framework [5], might allow researchers to predict and map prosody's links to sensory, cognitive, and neural functions.

SCOPE

Attention orientation Survival advantage

Shared across species

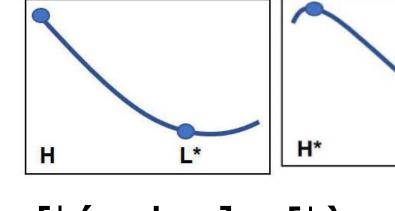
Salience detection

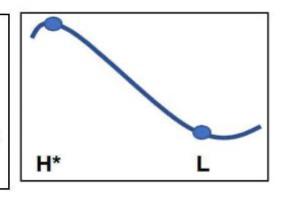
Social adaption

Formal features

Linguistic rules

Interactional aspects


Communicative roles Sophisticated in humans


GPT-5 mini

GPT-5 mini

'ándɛn] 'duck'

['ànden] 'ghost'

Sven ate the **DUCK**. (WHAT did Sven eat?)

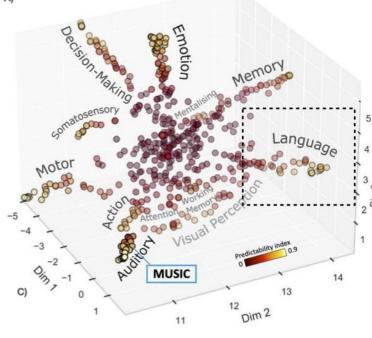
SVEN ate the duck. (WHO ate the duck?)

SIGNIFICANCE

Why it is important?

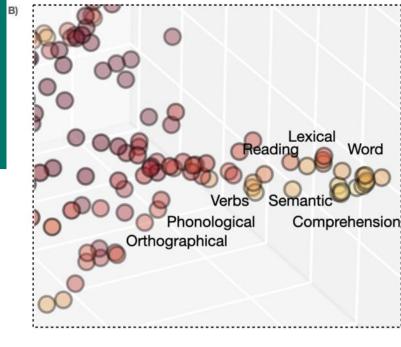
- Evolutionary roots: helps understand human cognition and communication
- Early development: informs language acquisition
- Clinical relevance: aids diagnosis and treatment
- Linguistic scope: reveals language processing mechanisms

Why it is challenging?


- Intertwined functions: sensory & cognitive integration and segregation
- Processing challenge: same acoustic variables
- Data gap: limited empirical evidence
- Neuroscience status: not searchable in metaanalytic platforms

TRAJECTORY

Morphospa Framewo


Clustering: Grouping brain functions by circuit similarities

Predictability: Forecasting functions from similarities

Brain-Cogn Morphospa

Gap: Cognitive maps omit prosodic features in language Action: Map fMRI studies of prosody in the morphospace

Morphospa of prosoc

Hypothesis: A central position, integrating loosely defined sensory and cognitive functions

Attentional network Salience network Multiple-Demand network

Images are used with permission from Pacella et al. (2024).

References:

- 1. Gussenhoven & Chen (2020). The Oxford handbook of language prosody. Oxford: Oxford University Press.
- 2. Zora, H., Rudner, M., & Magnusson, A. (2020). Concurrent affective and linguistic prosody with the same emotional valence elicits a late positive ERP response. Eur J Neurosci, 51, 2236–2249.
- 3. Zora, H., Tremblay, A. C., Gussenhoven, C., & Liu, F. (2023). Crosstalk between intonation and lexical tones: Linguistic, cognitive and neuroscience perspectives. Lausanne: Frontiers Media SA. 4. Zora, H., Bowin, H., Heldner, M., & Hagoort, P. (2025). Lexical and information structure functions of prosody and their relevance for spoken communication: Evidence from Psychometric and Electroencephalographic Data. Journal of Cognitive Neuroscience.
- 5. Pacella, V., Nozais, V., Talozzi, L., Abdallah, M., Wassermann, D., Forkel, S.J., & de Schotten, M.T. (2024). The morphospace of the brain-cognition organization. Nature Communications, 15, 8452.